martes, 24 de mayo de 2011

La Actina

 Natalia Nieto ,Angelica Meneses, Angela Caceres
La actina es una familia de proteínas globulares que forman los microfilamentos, uno de los tres componentes fundamentales del citoesqueleto de las células de los organismos eucariotas (también denominados eucariontes). Puede encontrarse como monómero en forma libre, denominada actina G, o como parte de polímeros lineales denominados microfilamentos o actina F, que son esenciales para funciones celulares tan importantes como la movilidad y la contracción de la célula durante la división celular.
Formando microfilamentos en un proceso dinámico proporciona un andamiaje que dota a la célula de una forma con posibilidad de remodelarse rápidamente en respuesta a su entorno o a señales del organismo, por ejemplo, aumentando la superficie celular para la absorción o proporcionando soporte a la adhesión de las células para formar tejidos. Sobre este andamiaje se pueden anclar otras enzimas, orgánulos como el cilio, dirigir la deformación de la membrana celular externa que permite la ingestión celular o la citocinesis. También puede producir movimiento, bien por ella misma o ayudada de motores moleculares. De ese modo contribuye a procesos como el transporte intracelular de vesículas y orgánulos y la contracción muscular, o la migración celular, importante en el desarrollo embrionario, reparación de heridas o invasividad del cáncer. El origen evolutivo de esta proteína se puede rastrear en las células procariotas, donde existen equivalentes. Por último es importante en el control de la expresión génica.
Un buen número de enfermedades tienen como base alteraciones genéticas en alelos de los genes que gobiernan la producción de la actina o de sus proteínas asociadas, siendo también esencial en el proceso de infección de algunos microorganismos patógenos. Las mutaciones en los distintos genes de actina presentes en humanos ocasionan miopatías, variaciones en el tamaño y la función cardíaca y sordera. Los componentes del citoesqueleto también tienen relación con la patogenicidad de bacterias intracelulares y virus, especialmente en procesos relacionados con la evasión de la respuesta del sistema inmune.
CLASIFICACION
La actina se presenta en la célula en dos formas: como monómeros globulares denominados actina G y como polímeros filamentosos denominados actina F (es decir, filamentos compuestos de multitud de monómeros de actina G). La actina F puede denominarse también microfilamento. A cada hebra de actina se une una molécula de adenosín trifosfato (ATP) o de adenosín difosfato (ADP) a su vez asociada a un catión Mg2+. De las distintas combinaciones posibles entre las formas de actina y el nucleótido trifosfato, en la célula predominan la actina G-ATP y la actina F-ADP.

Actina G
En cuanto a su estructura molecular, la actina G posee una apariencia globular al microscopio electrónico de barrido; no obstante, mediante cristalografía de rayos X puede apreciarse que está compuesta de dos lóbulos separados por una hendidura; la estructura conforma el pliegue ATPasa, un centro de catálisis enzimática capaz de unir el ATP y Mg2+ e hidrolizar el primero a ADP más fosfato. Este pliegue es un motivo estructural conservado que también está presente en otras proteínas que interaccionan con nucleótidos trifosfato como la hexoquinasa (una enzima del metabolismo energético) o las proteínas Hsp70 (una familia de proteínas que contribuyen a que otras proteínas posean estructuras funcionales).  La actina G sólo es funcional cuando posee o bien ADP o bien ATP en su hendidura; no obstante, en la célula predomina el estado unido a ATP cuando la actina se encuentra libre.

Actina F

Una descripción clásica afirma que la actina F tiene una estructura filamentosa interpretable como una hélice levógiramonocatenaria con giro de 166º e incremento de 27,5 Å o bien como una hélice dextrógira bicatenaria con medio paso de rosca de 350-380 Å, estando cada actina rodeada de otras cuatro. La simetría del polímero de actina, que es de unas 2,17 subunidades por vuelta de hélice es incompatible con la formación de cristales, que sólo es posible cuando éstas son exactamente 2, 3, 4 ó 6 subnidades por vuelta. Por tanto, se deben efectuar modelos interpretando datos procedentes de técnicas que salvan estos inconvenientes, como la microscopía electrónica, la criomicroscopía electrónica, cristales de dímeros en distintas posiciones o difracción de rayos X. Es necesario precisar que hablar de una "estructura" no es correcto para algo tan dinámico como un filamento de actina. En realidad se debería hablar de distintos estados estructurales, entre los cuales el dato más constante es el incremento de 27,5 Å, mientras que la rotación de las subunidades muestra una considerable variabilidad, siendo normal observar desplazamientos de hasta el 10% de su posición ideal. Algunas proteínas, como la cofilina, parecen incrementar el ángulo de giro, pero nuevamente se puede interpretar que, en lugar de ello, estabilizan algunos "estados estructurales" normales. Éstos podrían ser importantes en el proceso de polimerización.

LA ACTINA EN EL MOVIMIENTO DE LAS CELULAS
Los microfilamentos intervienen en el movimiento de todas las células móviles, incluso las no musculares, pues se ha descrito que los fármacos que desorganizan la actina F (como las citocalasinas) afectan a la actividad de dichas células. Como proteína, la actina supone el 2% del total de proteínas en hepatocitos, el 10% en fibroblastos, el 15% enamebas y hasta el 50-80% en plaquetas activadas. Existen distintos grupos de actina, con estructura y función ligeramente distintas. De este modo, la actina α es exclusiva de fibras musculares, y la presente en otras células suele ser del tipo β y γ. Además, la actina de tipos distintos a la α suele poseer una alta tasa de recambio que provoca que la mayor parte de ella no forme parte de estructuras permanentes. Así, los microfilamentos en las células no musculares aparecen de dos formas:
§  Redes de microfilamentos. Bajo la membrana plasmática es común en células animales la aparición de una corteza celular poblada por multitud de microfilamentos que excluye la presencia de orgánulos. Esta red está en relación con abundantes receptores celulares que traducen señales del exterior de la célula.
§  Haces de microfilamentos. Estos microfilamentos, dispuestos en redes, son de mayor longitud y, en asociación con proteínas contráctiles como la miosina no muscular, intervienen en el desplazamiento de sustancias a nivel intracelular.
APLICACIONES
El aprovechamiento de la actina en los laboratorios de ciencia y tecnología derivan de su participación como riel de motores moleculares como la miosina (ya en el músculo, ya fuera de él), y de su presencia necesaria para el funcionamiento celular. En cuanto a la clínica, dado que algunas variantes anómalas de la actina están relacionadas con la aparición de patologías, su detección es un criterio diagnóstico.
§  Nanotecnología. Los sistemas actina-miosina actúan como motores moleculares que permiten el transporte de vesículas y orgánulos a lo largo del citoplasma. Existen experimentos que aprovechan esta capacidad dinámica incluso in vitro, es decir, en sistemas acelulares, por lo que se ha postulado una aplicación nanotecnológica del sistema. La idea subyacente es emplear los microfilamentos como rieles sobre los cuales una o más proteínas motoras se deslicen transportando una determinada carga; es decir, definir un circuito espacial por el que pueda transportarse de forma dirigida y más o menos controlada una determinada carga. En cuanto a aplicaciones generales, se habla del transporte dirigido de moléculas para lograr su liberación en lugares concretos, lo que permitiría al ensamblaje de nanoestructuras de forma controlada. Estas capacidades podrían ser aplicadas en chips de investigación como los lab-on-a-chip, en nanocomponentes mecánicos y en nanotransformadores de energía mecánica en eléctrica.
§  Control interno en técnicas de biología molecular, como el western blot y la PCR en tiempo real. Debido a que la función de la actina es necesaria para la supervivencia celular, se postuló que su cantidad está tan controlada a nivel de producción celular que puede asumirse que su transcripción (es decir, el grado de expresión de sus genes) y traducción, (que es la generación de proteína) es prácticamente constante, independientemente de las condiciones experimentales. Por esta razón, en los estudios de cuantificación de proteínas (western blot) y detranscritos (PCR en tiempo real) suele realizarse además de la cuantificación del gen de interés la de un gen de referencia, como la mencionada actina. Dividiendo la cantidad del gen de interés por la de la actina es posible obtener una cantidad relativa comparable entre distintos experimentos, siempre y cuando la expresión de esta última no varíe; cabe destacar que la actina no siempre presenta la estabilidad deseada en su expresión.
§  Clínica. Algunos alelos de la actina son causantes de patologías, por lo que se han desarrollado técnicas para su detección. Además, la actina puede emplearse como marcador indirecto en patología quirúrgica: es posible emplear variaciones en pauta de localización en los tejidos como marcadores de invasión de neoplasiasvasculitis y otros. También, debido a su relación con el aparato contráctil muscular, la atrofia provoca la disminución de sus niveles en el músculo esquelético, por lo que puede emplearse como marcador de este fenómeno.
§  Tecnología de los alimentos. La determinación de la calidad de algunos alimentos procesados, como los embutidos, pasa por la cuantificación de su contenido en carne. Clásicamente se ha utilizado un método basado en la detección de la 3-metilhistidina en hidrolizados de estos productos, pues se trata de un compuesto presente en la actina y la cadena pesada de la miosina F (ambos componentes mayoritarios del músculo). La generación en el animal del compuesto se debe a la metilación de residuos de histidina presentes en ambas proteínas.

APLICACIÓN EN LA AGROINDUSTRIA DE LA ACTINA
La actina es la principal proteína constituyente de los filamentos delgados. Como  monómero se la denomina G-actina y en determinadas condiciones se polimeriza dando F-actina que constituye el esqueleto de estos filamentos. Cuando existe suficiente Ca ++   en el músculo (>10 -5  M) las formas de F-actina se  ponen en contacto con las cabezas de la miosina de los filamentos gruesos y se  produce así una rápida hidrólisis del ATP que da como resultado la contracción muscular.Es la mayor forma de proteína miofibrilar encontrada en el músculo  post-mortem, debiéndose a este complejo la rigidez cadavérica. Desde el punto de vista industrial, es posiblemente la proteína más importante, ya que de ella dependerá mas de una propiedad sensorial de los productos cárnicos de pasta fina y, el éxito económico de un proceso.
Asi mismo, se le atribuye la determinación de la calidad de algunos alimentos procesados, como los embutidos. Clásicamente se ha utilizado un método basado en la detección de la 3-metilhistidina en hidrolizados de estos productos, pues se trata de un compuesto presente en la actina y la cadena pesada de la miosina F (ambos componentes mayoritarios del músculo). La generación en el animal del compuesto se debe a la metilación de residuos de histidina presentes en ambas proteínas.

No hay comentarios:

Publicar un comentario